Applus+ around the world
Close Countries Panel
  • GLOBAL SITE
  • Belgium
  • Brazil
  • China
  • Czech Republic
  • France
  • Germany
  • India
  • Indonesia
  • Italy
  • Japan
  • Malaysia
  • México
  • Netherlands
  • Poland
  • Russia
  • Slovakia
  • South Africa
  • South Korea
  • Spain
  • Sweden
  • Taiwan
  • Thailand
  • Turkey
  • UK
  • United Kingdom
  • USA
Close Divisions Panel
Applus+ DIVISIONS
Energy & Industry Division
Industrial and environmental inspection, vendor inspection, technical assistance, non-destructive testing (NDT) and technical staffing for all type of industries.
Logo RTD Logo VELOSI Logo NORCONTROL Logo Intec Logo K2
Logo Ingelog Logo JAN Logo Kiefer Logo Novotec Logo NRay
Logo PTJava Logo Skc Logo XRay Logo Qualitec
Laboratories Division
Multidisciplinary laboratories.Testing and engineering for product development. Conformity testing and product certification. SYSTEMS CERTIFICATION.
Logo Applus Laboratories Logo Applus Certification
Automotive Division
Statutory vehicle inspection services and emission & gas testing solutions worldwide.
Logo Applus Automotive Logo Applus ITVE Logo NCT Logo Applus Bilsyn Logo K1
Logo Technologies Logo ITVs Logo Riteve
IDIADA Division
Design, engineering, testing and homologation services for the automotive industry worldwide.
Logo Applus IDIADA
Publications

AsPeCSS - SIAT, January 2015

21/01/2015
Pedestrians and cyclists are the most unprotected road users and their injury risk in case of accidents is significantly higher than for other road users.
Pedestrians and cyclists are the most unprotected road users and their injury risk in case of accidents is significantly higher than for other road users. Though the level of safety for pedestrians, as established through Euro NCAP and others, has significantly increased over the last years, currently still more than 20% of road fatalities correspond to pedestrians.

The test procedures and assessment methods for pedestrian safety show potential for further improvement and thus should be adjusted accordingly. The understanding of the influence and sensitivity between important variables describing a pedestrian crash is key for the development of more efficient and reliable safety systems. This paper reflects the related work carried out within the AsPeCSS project. The results summarized out of virtual and physical tests provide valuable information for further development.

 
1168 virtual and 120 physical tests were carried out with adult and child pedestrian headform impactors, upper legform impactors and lower legform impactors on representatives of 4 different vehicle front geometries in a wide range of impact speeds, angles and locations. This test matrix was based on previous work carried out within the ASPECSS project.
 
The results obtained show several trends and influences of input variables (impact speed, angle, location, impactor masses, impactor type) on the particular outcomes. In general, impact speed was the most influential parameter. The increase of impact speed resulted in higher HIC, bending moment or force presumably generating a higher injury risk. The work carried out provided the results to enable further development of Injury Risk Curves regarding VRU protection for different body regions.
This work provides insight into the variation of injury criteria when also considering different speed and angles which is especially useful for the evaluation of active safety systems (e.g. AEB).
 
Site map