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Introduction 
The physics and mechanics of welding can be separated into the physics of the arc and weld pool 
on the one hand and the mechanics of the solid base metal on the other hand. The coupling 
between the physics and mechanics of the weld pool and the solid base metal is mainly 
Computational Weld Mechanics’ (CWM) algorithms and software that predict the behavior of 
welds in the welded structures. 
 
Development of CWM started in the early 1970s for practical weld engineering and it is now 
maturing with a good level of reliability, including complex physics of welding, material modelling, 
and stress– strain dependency on temperature and evolution of microstructure. Recent activities 
have focused on computational strategies and how they are integrated with other approaches to 
facilitate the use of simulations in industrial scale engineering with sizeable geometry and real-
world complexity. Available modeling packages of the welding process solve the welding process 
based on 3D transient nonlinear finite element analysis (FEM) with realistic 3D geometry using 
complex numerical algorithms and are often solved for thousands of time steps associated with 
the welding progress1. 
 
A CWM package can save time, money and explore “what if” scenarios that are difficult to assess 
by analytical approaches, and/or through experimentation alone. A CWM package can be viewed 
as a control box that has a set of output responses associated to a set of input parameters. The 
input parameters can be welding parameters e.g. weld power, weld speed, sequencing, etc. or 
parameters associated with the welded structure such as geometrical dimensions, weld location, 
weld size, fixturing, and more, or workmanship factors such as welding flaw, cracking, 
randomness, and so on. 
 
A welding specialist can render opinion on the effect of welding factors and may use further 
analytical calculation to quantify some effect on simple cases. However, the complexity of 
existing welded structures and the level of welding engineering demanded for today’s welding 
problem require exploring a complex weld design space using a large number of analysis where 
developing a consistent solution through intuition based approaches and simplified analytical 
calculations become unfeasible (perhaps impossible). 
 

                                                      
1 M. A. J. A. Goldak, Computational Welding Mechanics, N. Y.: Springer, 2005. 



EXPLORING A COMPLEX WELD DESIGN SPACE USING 
A LARGE NUMBER OF COMPUTATIONAL WELD 
MECHANICS ANALYSIS, TIME EFFECTIVE  
 

   

Even using a predictive computer model, a designer cannot make a decision based on a single 
analysis- reality requires solving several analyses in a short time and reasonable cost (a 
challenging task). This is due to complexity of a weld model that needs expert user time and 
requires long CPU times that force the use of parallel computation. Human error in multiple 
analyses is very likely and managing several analyses may become an additional challenge. 
 
The authors’ experience in providing CWM service for routine engineering lead us to believe that 
practical solutions will be found if a service provider becomes skilful in handling significantly large 
number of modelling analyses in a short time frame. 
 
Weld fracture mechanics 
 
Welded structures are likely to contain or form welding flaws in the weld region. These include 
porosity, cracks, metallic inclusions, etc. Although the ideal is a defect-free structure the nature of 
welding processes as well as service conditions under fatigue loading or creep at an elevated 
temperature necessitate inspection that detects defects in the structure before installation of in 
the course of service. Very often, the structure is a high-value asset and cannot easily go out 
offline for replacement or repair. 
 
When repair is not possible, API 579/ASME FFS-12 (common in the US and Canada), or BS 79103 
(Europe and Canada) standards offer Fitness-For-Service (FFS) assessment at different levels. 
Using computer modelling of fracture behavior in flawed structure enabling reliable prediction of 
Remaining Useful Life (RUL) is becoming the most pursued technique under API 579 or BS 7910 
FFS services. Based on these computational capabilities, the criticality of flaws or damages 
detected by visual and non-destructive methods can be determined, and the remaining life of the 
component/asset under particular service conditions predicted. 
 
RUL calculations for defects are required on a case-by case basis in order to justify making fitness-
for-service decisions. Crack growth is controlled by the SIF (Stress Intensity Factor) that depends 
on a combined global and local stress analysis of the joint with a flaw embedded. The shape, size, 
location, and orientation of the flaw needs to be considered from inspection, and the SIF 
recalculated for each increment of growth until a critical flaw size that leads to the final fracture. 
 
Fatigue Weld Fracture 
 

                                                      
2 ASME, API Recommended Practice 579, Fitness for Service, Washington D.C: ASME, 2016. 
3 B. S. Institute, BS 7910 Guide to Method for Assessing the Acceptability of Flaw in Metallic Structures, London: BSI 
Standard Limited, 2013. 
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API 579 and BS7910 ECA (Engineering Critical Assessment) under Fatigue FFS considers the life of 
sub-critical crack growth stage for the assessment. The assessment is based on the Paris-Erdogan 
law and the experimental measurement of fatigue crack growth rates (FCGR) in accordance with 
ASTM E6474. 
 
BS7910 requires calculation of the parameter for plastic collapse Lr, and the fracture ratio Kr for 
each increment of crack growth. These parameters are used to determine the critical crack length 
by comparison to a material specific Failure Assessment Diagram (FAD). 
 
Our Developed Methodology For ECA is Summarized Below: 
 

• Using digitized radiographs a 3D map is created for each weld with embedded flaws. 
This map gives the location, size, shape and orientation of each flaw in the joint as well 
as the actual weld height and leg length. 

• Based on this we prepare an initial model of each weld. We use numerical analysis 
(FEA) methods to determine the stress intensity factor (SIF), K, including at least two 
techniques of calculation e.g. J-Integral and CTOD (Crack Tip Opening Displacement). 
We report K if both techniques converge to a similar number. 

• The crack growth direction is predicted by controlling SIF calculations over all nodes 
along the crack front in 3D coupled with sequential growth rates at each node, to 
evolve the planar shape of the crack. Figure 1 shows an example of the evolution of 
the crack front from an initial detected crack. This capability also enables us to 
determine if the joint will Leak-before-break. 

• Using this information, a number of growth cycles is then calculated5. By converting 
the growth cycles to life, the critical times are determines for integrity management. 

 

                                                      
4 ASTM, Standard Test Method for Measurement of Fatigue Crack Growth Rates, ASTM International, 2013. 
5 T. L. Anderson, Fracture Mechanics Fundamentals and Applications, Boca Raton FL: CRC Press, Taylor & Francis 
Group, 2005. 
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Figure 1 Crack front evolution from an initial crack detected in a tube butt weld 

 
A Fatigue FFS Project  
 
The name of client and other confidential information for the following discussion shall not be 
disclosed.  
 
We were asked for ECA for a number of fillet welds and groove welds in the structure subject to 
fatigue loading. Our inspection crew reported that the welds contained linear type defects (lack 
of fusion, incomplete penetration, non-metallic inclusions). On a case-by-case assessment, we 
implemented the methodology explained earlier. Project time constraints were the key factor for 
the client to define the criticality of each joint and related plan of action including downtime.  
 
Normally, there is more than a single flaw in any particular joint, and multiple joints containing a 
flaws. A service provider might be able to complete an FEA-based FFS ECA in a short timeline as a 
fast response. However, dealing with tens of ECAs can only be beneficial to a client if managed in 
parallel in order to adhere project timelines. Such a project cannot be possible manually and must 
be parameterized and automated. 
 
FFS standards are mainly written for RUL of planar type flaws or conservatively assume the 
closest planar crack shape to the flaw for RUL assessment based on the long crack growth stage of 
fatigue. This approach ignores the nucleation life because this life are very short when dealing 
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with a planar type flaw. However, the nucleation life can be long (in some cases beyond the 
design life) for volumetric flaws such as spherical type defects.  
 
Nucleation life can be determined by an S/N curve that is experimentally measured following 
ASTM E468 for stress controlled fatigue test of metallic materials or ASTM E606 for strain-
controlled fatigue testing. As oppose to planar type flaws that require a case-by-case assessment, 
volumetric flaws can be analyzed in accordance with a general safe/unsafe region in the weld 
metal. A safe region, for each weld, is determined by comparing the resultant stresses for a series 
of simulated defects and a threshold peak stress observed through simulation of a defect-free 
weld. 
 
Creep Weld Fracture 
 
As with fatigue, creep damage is a progressive and localized structural damage mechanism. 
Elevated temperature introduces new mechanisms of creep plastic flow or creep damage that are 
temperature, stress and microstructure dependent. A Creep Deformation Mechanisms Map 
(DMM) is a diagram that summarizes all mechanisms and associated active ranges for different 
materials. Most creep models (e.g. Larson-Miller or Omega model in API 579) are developed for 
the creep damage mechanism which is less sensitive to variation in microstructure than actual 
creep mechanism that is active in service condition, and therefore no microstructure term 
appears in the formulation6.  
 
Actual service life failure in P91 structures, are most often observed in the Heat Affected Zone 
(HAZ) of weld where variation in microstructure is sharp and significant. Considering the typical 
operational temperature and stress for P91 materials, the dominant creep mechanisms and the 
creep rate is greatly dependent on the microstructure state. Therefore a model must include 
microstructure changes for a realistic prediction. In addition to the microstructure effect, welding 
residual stress (WRS) is also present in HAZ and therefore must be addressed. The models 
discussed herein define the Crack Critical Location(s) (CCL) where a creep crack forms and Paris-
Erdogan law can be used to determine the RUL. 
 
A Creep FFS Project 
 
The project was creep life prediction of a P91 pipe under an operational temperature of 700 [K], 
subjected to non-uniform stress distribution including combined residual stress from welding and 

                                                      
6 J. Z. L. L. M. Asadi, "An Integrated Welding and Damage Model for Practical Prediction of Creep Life in Welded P91 
Alloy," in ASME 2016 Pressure Vessels & Piping Division, Vancouver BC, 2016. 
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10 [bar] internal pressure. The weld was made with two GTAW passes - root and cap weld passes 
with the joint preparation shown in Figure 2.  
 

 
Figure 2 Mesh and weld cross section modelled for creek life prediction 

 
The project started with welding modelling including a 3D model of the full welding procedure 
specification (WPS) provided. Figure 3 illustrates a snapshot of the transient temperature field 
when the weld cap is approximately 50% completed.  
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Figure 3 Transient temperature when the cap weld passes half weld path 

The result of thermal modelling of welding process is the thermal profile history for every node of 
weld metal, HAZ, and base metal pipe. These profiles were fed into a microstructure solver to 
predict key creep microstructure parameters, namely grain size (GS), precipitation size (PS), and 
precipitation interspacing (PI) for every node based on a table of correlation between the peak 
temperature and observed microstructure. Figure 4 shows 3D map of average grain sizes after 
welding.  
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Figure 4 3D map of average grain size 

For creep assessment we need to define both nodal operating temperature and stress. Nodal 
temperature was calculated by thermal FEA under the operating condition. To accommodate the 
effect of WRS, the welding residual stress was calculated using a FEA model, scaled and smoothed 
using an empirical relation developed for P91 to reflect the post weld heat treatment (PWHT) 
required by code for stress relief. This stress was initialized at the FEA nodes and the stress was 
re-solved when the internal operational pressure (10 [bar]) at operational temperature (700 [K]) 
was applied to the pipe. The new stress-strain state was used for creep life prediction. Figure 5 
shows a 3D map of WRS in the weld metal, the HAZ and the pipe parent metal. 
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Figure 5 Welding residual stress 

A validated DMM for P91 that covers the full range of stress and temperature and is a function of 
microstructure GS, PS, and PI was used to determine the nodal creep rate for every node based 
on the nodal state of microstructure and the stress and temperature exposure. These rates were 
then converted to life as shown in Figure 6. Other than the start end location of welding that 
shows an irregular red region, there are two rings of poor creep resistance on either side of the 
weld in the HAZ. This is conforms to the observations in the field. 
 
If the assessment is based on a safe life approach that requires time to nucleation of a crack, this 
will define CCL(s) and inspection intervals. If the assessment is based on the damage tolerance, 
additional life can be calculated for the crack growth. 
 
Conclusion 
 
The use of simulation models is now routine in many areas of engineering; however, welding is 
among the few fields where engineering decisions remain generally traditional. Despite 
simulation packages that are now capable of supporting decisions based on quantitative analysis, 
there is little application in practice: Firstly, there is a shortage of skill in modelling and 
simulation, and secondly there is a need for automation to reduce the cost of analysis by making 
more effective use of the user's time, and for more efficient CPU time allocation. 
The authors hope that their experience encourages welding engineers to more frequently use 
simulation models for routine engineering. 
 


